![Python](https://img.shields.io/badge/python-3.8+-blue.svg) ![License](https://img.shields.io/badge/license-MIT-green.svg) ![arXiv](https://img.shields.io/badge/arXiv-API-red.svg) ![Platform](https://img.shields.io/badge/platform-windows%20%7C%20linux%20%7C%20macos-lightgrey.svg) # 📚 Research Digest **Automated daily research paper digest from arXiv with smart filtering, mobile-friendly interface, and AI-powered summaries.** Fetch, filter, and browse the latest research papers tailored to your interests. Desktop grid view for deep reading, mobile feed for quick scrolling. --- ## ✨ Features - **🎯 Smart Filtering** - Keyword-based relevance scoring across custom research interests - **📱 Mobile Feed** - Swipeable, full-screen card interface optimized for phones - **🖥️ Desktop Grid** - Multi-column layout with rich metadata and difficulty badges - **🧠 AI Summaries** - Auto-generated layman explanations using transformers - **🔄 Deduplication** - Never see the same paper twice with built-in tracking - **⚙️ Configurable** - JSON-based settings for interests, filters, and preferences - **📦 Archive** - Auto-saves daily digests with browsable index --- ## 🖼️ Screenshots ### Desktop View ![Desktop Demo](desktop_demo.png) ### Mobile Feed ![Mobile Demo](mobile_demo.png) --- ## 🚀 Quick Start ### Windows 1. **Clone & Run** ```bash git clone https://github.com/yourusername/research-digest.git cd research-digest run_digest.bat ``` 2. **First run automatically:** - Creates virtual environment - Installs dependencies - Fetches papers - Generates HTML digests 3. **Open in browser:** - `latest.html` - Most recent digest - `index.html` - Browse all archives - `tiktok_feed.html` - Mobile-optimized feed ### Linux/macOS ```bash git clone https://github.com/yourusername/research-digest.git cd research-digest python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt python main.py python generate_index.py ``` --- ## ⚙️ Configuration Edit `config.json` to customize: ```json { "interests": { "Your Research Area": { "query": "cat:cs.LG OR cat:cs.AI", "keywords": ["keyword1", "keyword2", "keyword3"] } }, "settings": { "papers_per_interest": 10, "recent_days": 7, "summary_max_length": 160 } } ``` ### Available Settings | Setting | Default | Description | |---------|---------|-------------| | `papers_per_interest` | 10 | Papers to fetch per category | | `recent_days` | 7 | Look back window (0 = all time) | | `fallback_days` | 90 | Extended search if few results | | `summary_max_length` | 160 | Max characters for summaries | | `fetch_multiplier` | 5 | Over-fetch for better filtering | --- ## 📖 arXiv Query Syntax Use arXiv category codes in queries: - `cat:cs.LG` - Machine Learning - `cat:cs.CV` - Computer Vision - `cat:cs.CL` - Computation & Language (NLP) - `cat:cs.AI` - Artificial Intelligence - `cat:cs.CR` - Cryptography & Security - `cat:cs.DC` - Distributed Computing Combine with `OR`/`AND`: `cat:cs.LG OR cat:cs.AI` [Full category list](https://arxiv.org/category_taxonomy) --- ## 🔧 Advanced Usage ### Automated Daily Digests **Windows Task Scheduler:** 1. Open Task Scheduler 2. Create Basic Task → Daily → 7:00 AM 3. Action: Start Program → `C:\path\to\run_digest.bat` **Linux/macOS Cron:** ```bash 0 7 * * * cd /path/to/research-digest && ./venv/bin/python main.py && ./venv/bin/python generate_index.py ``` ### Sync to Mobile (Syncthing) 1. Install [Syncthing](https://syncthing.net/) on PC and phone 2. Share project folder 3. Access HTML files directly on phone ### Reset Seen Papers ```bash python reset_seen_papers.py ``` --- ## 📂 Project Structure ``` research-digest/ ├── config.json # Configuration (edit this!) ├── main.py # Core paper fetcher ├── generate_index.py # Archive browser generator ├── generate_tiktok_feed.py # Mobile feed generator ├── run_digest.bat # Windows launcher ├── requirements.txt # Python dependencies ├── latest.html # Latest digest (auto-generated) ├── index.html # Archive browser (auto-generated) ├── tiktok_feed.html # Mobile feed (auto-generated) ├── seen_papers.json # Deduplication tracker └── arxiv_archive/ # Daily archives ├── arxiv_digest_20251101.html └── ... ``` --- ## 🛠️ Requirements - **Python 3.8+** - **Dependencies:** `transformers`, `torch`, `requests` - **Disk Space:** ~2GB for model, ~10MB per digest - **Internet:** Required for arXiv API and first-time model download --- ## 📝 License MIT License - see [LICENSE](LICENSE) file for details --- ## 🤝 Contributing Contributions welcome! Ideas: - Additional paper sources (bioRxiv, SSRN, etc.) - Browser extension for direct syncing - Custom ML models for better summaries - Export to Notion/Obsidian/Roam --- ## 🙏 Acknowledgments - [arXiv](https://arxiv.org/) for the open research repository - [Hugging Face](https://huggingface.co/) for transformer models - Inspired by modern feed UIs and research workflows --- **Built with ❤️ for researchers who want to stay current without drowning in papers**